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Abstract

Services provided by nature and ecosystem capital are unpriced 
and their contributions cannot be observed through factor 
payments. Estimates of nature’s GDP contribution are thus based 
on bottom-up extrapolations of local ecological valuations or 
various sectoral dependency assumptions. These estimates are 
hence partial and wide-ranging. On the other hand, omission of 
nature and ecosystem capital in standard growth regressions 
potentially biases estimated returns to other factors of production. 
This paper incorporates various categories of natural capital and 
biodiversity into growth regressions, with annual data covering 
more than 100 economies over more than two decades. A range 
of econometric specifications are used, including fixed effect panel 
regressions, Arellano and Bond, and Pseudo Poisson Maximum 
Likelihood. The estimates point to natural capital, especially the 
narrower and specific ecosystem capital, having a sizeable 
positive elasticity of around one-third of total gross fixed capital. 
Ecosystem capital is thus estimated to contribute around USD6–
12 trillion (or 10–20 trillion in purchasing power parity terms) 
annually to the global economy. This estimated contribution is 
significantly higher than what is implied by existing stock 
valuations, underscoring the importance of ecosystem capital to 
sustainable growth.   
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1. Introduction

Do unpriced natural and ecosystem capital contribute to economic output and how 
large might the contributions (if any) be? This paper undertakes a gross domestic 
product (GDP) growth decomposition exercise with an assembled longitudinal dataset 
comprising GDP and related national accounts data, as well as more comprehensive 
measures of natural capital and biodiversity. This expands on traditional growth 
accounting where GDP is often attributed to human capital, physical capital stocks, 
and total factor productivity (TFP) only. This paper thus links GDP (a flow concept) to 
an expanded measure of natural capital and biodiversity, uncovers respective 
elasticities, and estimates the contribution of natural ecosystem capital to output.

The relationship between economic growth and ecological constraints has long 
attracted academic and political attention. As early as 1972, the then controversial 
Limits to Growth report spelt out the challenges of resource depletion and emission, 
and how these could greatly constrain or even crash growth in the 21st century. More 
than a decade ago, the Stiglitz, Sen and Fitoussi (2009) Commission also made it clear 
that GDP was an income flow and would need to account for the damage to the stock 
of environment wealth in order to drive sustainable development, a point strongly 
reiterated in the more recent Dasgupta (2021) review. There have been longstanding 
concerns over how GDP growth could exhaust natural capital to the point of 
threatening prosperity. 

In 2022, the 15th Conference of Parties (COP15) to the Convention of Biological 
Diversity (CBD) reached the landmark agreement to put 30% of earth under protection 
by 2030. In 2023, nations agreed to the United Nations High Sea Treaty which would 
for the first time establish marine protected areas outside national maritime borders.1

Protecting nature is now seen as central to sustainable development, alongside the 
net zero transition to avoid catastrophic climate change.

The important link between ecology and economy has also affected economics as a 
profession. Nature and biodiversity were seen to be outside mainstream economics
[Dasgupta (2008)]. This is clearly no longer the case. Though estimates vary, it is now 
widely acknowledged that nature underpins a significant part of economic activity and 
human well-being. There has correspondingly been a sea change in data quality for 
natural capital and biodiversity in recent decades. 

The Changing Wealth of Nations (CWON) dataset by the World Bank is one such key 
effort [World Bank (2021)]. It attempts to capture economies’ stock of natural wealth, 
in addition to man-made physical wealth and human capital. The natural wealth data 
is further broken down into various components, including nonrenewable natural 
wealth (fossil fuels, metals, minerals etc.) and renewable natural wealth (timber, 

1 See Convention on Biological Diversity press release, December 19, 2022, “Nations Adopt 
Four Goals, 23 Targets for 2030 In Landmark UN Biodiversity Agreement.” See UN News, June
19, 2023, “Beyond Borders: Why New ‘High Seas’ Treaty Is Critical for The World.”
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cropland, fisheries, mangrove, non-timber forest, protected areas etc.).2 Each iteration 
of CWON has improved on the previous one and there are efforts underway to improve 
on the estimates for renewable energy capital.

In this paper, ‘ecosystem capital’ refers to a narrower subset (mangroves, protected 
land, non-timber forests) of natural capital, distinguishing it from ‘commodity natural 
capital’ (i.e., fossil fuels, metals, minerals etc.) or ‘cultivated natural capital’
(pastureland, agriculture, fisheries, timber forest). As will be elaborated on later, this 
distinction is important. 

These natural capital estimates also give rise to puzzles. Based on 2018 CWON 
estimates, the wealth of nations is predominantly in the forms of produced capital and 
human capital (31% and 64% of total wealth respectively). Commodity capital accounts 
for a significant part of the remainder. On the other hand, renewable natural capital 
accounts for only 3% of total wealth. Within this, ecosystem capital wealth is only 
slightly over 1% of total wealth. These low valuations suggest that ecosystem capital
does not contribute much to economic output, which is at odds with numerous studies
to be discussed shortly.

Besides the improvement in data on natural capital stock, there are also attempts to 
derive flow monetary estimates of nature’s contributions in both scientific and 
economics literature. Estimating nature’s contributions to economic output is not just 
an academic exercise. This is important to inform policy and motivate necessary
conservation actions. 

An approach is based on bottom-up extrapolations. For example, valuations of 
ecological services are often estimated using local case studies, and these are then 
extrapolated to some global figures by assuming that similar biomes would offer the 
same values [see de Groot et. Al (2012); Costanza et al. (2014)]. This approach 
typically produces rather high global valuations of nature’s services. It is estimated that 
global ecosystem services could be worth as much as USD125 trillion per year (in 2007 
dollars).

There are also studies that are based on the sectoral approach. This first assesses 
how much of each sector’s inputs to production are dependent on nature’s services or 
material provisions. This approach then aggregates dependencies at various levels–
sector, economy-wide, or global. A United Nations (UN) report states that half of the 
world’s GDP is dependent on nature [UNEP (2021)]. A separate World Economic 
Forum (WEF) report arrives at a similar proportion [WEF (2020)]. Bottom-up methods 
tend to result in large estimates because these are typically partial, based on 
assumptions and extrapolations, and do not typically account for the effects of other 
factors. Take agriculture as an example—what proportion of output is truly nature-
based, as opposed to the contribution of human labor, knowledge, and physical capital 

2 A key use of these data is to allow one to derive net national output measures that account 
for the loss of natural capital [Dasgupta and Mäler (2000)].

Jang Ping Thia, Jiaqi Su, and Xinyu Kong



AIIB Working Paper No. 14 (2024)

4

such as farm machinery, warehousing, and logistical infrastructure? Existing work that 
estimates each sector’s dependency on nature are somewhat subjective and partial.3

There is also the modelling approach using computable general equilibrium (CGE). 
Based on CGE modelling, a World Bank study estimates that the collapse of 
ecosystems will result in USD2.7 trillion lost output per year. This is surprisingly small 
relative to global GDP compared to the bottom-up approaches. A key reason is that
CGE models often build in substitutability between factors of production. In other words, 
there are possible technological substitutes for nature’s services. To be clear, there is 
often a high degree of uncertainty on how substitutable nature’s services can be. While 
USD2.7 trillion is relatively small, this World Bank estimate does show that certain 
sectors and poorer economies would be hardest hit with the collapse of nature [World 
Bank (2021)].

1.1 Contribution of Paper

This paper contributes to these studies by adopting a growth accounting approach, 
treating natural or ecosystem capital as factors of production. Specifically, we 
undertake a range of growth regressions to uncover the contribution of nature, even 
though services provided by nature are unpriced. 

As mentioned, we further separate between renewable natural capital into cultivated 
natural capital and ecosystem natural capital (non-timber forests, protected areas, 
mangroves). The former is human-modified, while the latter would be much more 
aligned with nature and biodiversity. This separation is conceptually important as 
cultivated capital can be at odds with biodiversity. For example, while an increase in 
agricultural land can contribute to productivity of food production or a rustic 
environment for well-being, it could also accelerate biodiversity loss. It is thus possible 
to record a rise in natural wealth and at the same time cause harm to natural 
ecosystems and species. As is well noted in the growth regression literature, 
aggregation of distinct factors of production, should they have different marginal 
products, will lead to biased estimates. The separation between human-modified 
natural capital and ecosystem capital is thus also important both for conceptual and 
econometric reasons.

Finally, the paper also leverages on both natural capital and biodiversity data. The 
research makes use of the Biodiversity Intactness Index (BII), which is based on a 
geospatially granular assessment of the quality of biodiversity intactness of the 
environment, aggregated toward a national-level variable (Scholes and Biggs, 2005).
The research uses the BII variable essentially to adjust for the quality of ecosystem 
capital stocks, or, as a separate variable in growth regressions (See Annex A Table 5
for country-specific BII scores.). This is important to ensure that the quality of natural 
capital is also accounted for. For greater confidence, the regression results of the 
various approaches are provided for comparison. 

3 World Economic Forum (2020) and PwC score each industry’s dependency based on the 
industry’s dependence on identified natural processes. 
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To preview the results, across all regression specifications, physical and human capital 
continue to be highly and statistically significant in explaining economies’ GDP growth. 
The results also show that natural capital is important to GDP across all regression 
settings–and somewhat surprisingly, ecosystem stock is more statistically significant 
(and economically important) compared to cultivated natural capital or commodity
natural capital.  

With a range of estimates, we show that ecosystem capital has an elasticity that is 
around one-third that of total fixed capital stocks (including infrastructure and other 
gross fixed capital), in contrast to a stock valuation estimate that is fairly low at around 
4% of total fixed capital stock only. This is a sizeable impact and provides preliminary 
evidence that the ecosystem contributes more to economic output than what is implied 
by ecosystem stock valuation and underscores the importance of maintaining natural 
and ecosystem capital for sustainable growth. 

Section 2 provides a review with the literature. Section 3 provides detailed description 
of the data sources and the adjustment made. This is supported by further details in 
two separate Annexes. Section 4 details the regression framework and results. Section 
5 discusses the results, to be followed by a short conclusion in Section 6.

2. Review of Literature

We first connect our research to the literature on ecological services. This literature 
categorizes nature’s support to human output and welfare into three broad dimensions. 
First, nature provides essential “free” or unpriced infrastructure services, such as 
cleaning water, protecting coastal areas, regulating nutrient cycles, pollinating crops,
all of which are critical to so many sectors. Second, nature provides the raw materials
and energy for human production and consumption. Agricultural production for 
example depends largely on land and soil, and construction also draws on naturally 
occurring materials. The world economy is also heavily dependent on fossil fuels today.
Third, nature provides recreational value and welfare to humans. Tourism is perhaps 
the most pecuniary example (e.g., natural wonders, protected parks, and experiences
with wildlife), but the impact of nature on human mental and physiological wellbeing 
certainly goes well beyond this narrow definition. There is now evidence that birdsongs 
and nature boost mental wellbeing [Ferraro et al. (2020)].

The recent Dasgupta Review highlights various estimates of the economic benefits of 
nature and biodiversity, reiterating the importance of sustaining these. Importantly, the 
interim review also clarifies two related but different concepts—namely nature and 
biodiversity. “Biodiversity increases Nature’s resilience to shocks, reducing the risks to 
the services we rely on” (Dasgupta, 2020, p. 16). In other words, the review makes it 
clear that natural capital can be sustained only if there is sufficient biodiversity to 
support it. Biomass alone is thus not an adequate measure of nature’s health. 

There have been efforts to account for the economic contribution of nature and 
ecosystem. Boyd (2006) provides a sketch on what kinds of non-market ecological 
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services should be counted as green GDP, and there are also nascent efforts to 
compute gross ecosystem product or GEP [Ouyang et al. (2020)]. In some sense, this 
effort continues to be a work in progress as there will always be some uncertainty
around estimates given the complex linkages within nature and with the economy. 
Such efforts are nonetheless critical to provide a deeper understanding of how nature 
interacts with the economy, inform policy designs, and motivate actions for 
conservation. 

Four related issues affect natural capital valuation, contribution to GDP and related 
empirical work. Firstly, natural capital accounting is still relatively new, and 
methodologies to value natural capital (especially ecosystem capital) are still subject 
to some uncertainty. For example, it is still debated whether natural capital should be 
valued using market prices or some form of shadow price. “The use of shadow prices 
is theoretically obvious . . .The problem is that shadow prices cannot be observed, but
a practical approach is followed by starting from market prices (whenever available) 
and adjusting them for externalities.” [Smulders (2012)].4

There are also longstanding concerns about the validity of extrapolating valuations 
from local studies. The key weaknesses have been well articulated. “In practice, it is 
likely that per-unit demand for non-substitutable services escalates rapidly as supply 
diminishes, so that simple grossing up of marginal values will probably underestimate 
total true value. On the other hand, high local values of services such as tourism may 
not be maintained if extrapolated worldwide.” [Balmford et al. (2002)]. In other words, 
scaling up local valuations could lead to bias in either direction. 

This discussion leads to the second issue which is cross-dependency of omitted 
variables. As briefly discussed, factors of production work together and with nature. 
Omission of variables in any analysis (including growth regressions) may then cause 
some assets to pick up the effects of non-measured assets, leading to the wrong 
valuations. Carse (2012) documents the interesting example of how the Panama Canal 
in fact relies heavily on the surrounding watershed ecosystem for freshwater to
rebalance water levels in the locks for each ship transit.5 Without the provision of 
freshwater from nature, there would be low returns to this piece of engineered hard 
infrastructure. Yet, the provision of water for the canal is largely unpriced, as with most 
of nature’s services. The 2023 drought curtailed the capacity of the canal, reducing the 
productivity of the asset.6

As a national income accounting tool, GDP does not explicitly account for factor 
payments to nature. It is plausible that natural capital affects the factor returns to other 
forms of capital (e.g., ecosystems affecting the returns to farm capital, or mangrove 

4 See also inclusive wealth measures (United Nations, 2018). The approach and categories of 
capital are similar to CWON. The key difference is that CWON relies largely on observed market 
price (or proxies) to value capital, while the UN inclusive wealth measures rely more on 
assumed shadow prices. 
5 Around 50 million gallons of freshwater are required for each transit, enough to meet the daily
needs of a small-sized city. There are around 30-40 transits per day. 
6 See BBC News. Nov. 1, 2023. El Nino Droughts: Panama Canal Cuts Ship Numbers Further.
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protection affecting returns to coastal real estate). Without natural or ecosystem capital
being reflected in growth accounting, it is also possible that traditional understanding 
of the returns to physical and human capital is inaccurate. The returns to other forms 
of capital, or TFP could be over or understated.

Thirdly, beyond omitted variables, there are also other sources of endogeneity. 
Consider the effects of depletion. Ecosystem capital may support growth (i.e., a
positive relationship), but growth itself may put pressure on the environment and 
subsequently deplete ecosystem capital—which indeed is the central concern—
yielding a negative relationship.

Consider also the endogeneity from measurement. The valuation of mangroves 
depends on the avoided losses of real estate they protect, but the value of real estate 
also depends on the protection it receives from mangroves. Furthermore, GDP growth 
itself will raise asset values and these ‘price effects’ can then also feed into the ‘market 
valuation’ of natural capital. One can plausibly arrive at a situation where natural capital 
values increase because of such ‘price effects’ when in reality the underlying quantity 
or quality of natural capital is being eroded unsustainability. As valuation of capital itself 
can be endogenous to GDP, it does not provide a true assessment on how GDP 
depends on such capital. Because of these sources of potentially complex endogeneity, 
it is actually not clear which sign the ecosystem variable will take with respect to growth.

Finally, there is still a lack of integration between natural capital and biodiversity data. 
As mentioned, natural capital and biodiversity are related but separate concepts. Thus 
far, data on biodiversity tends to be narrowly focused and ‘hyper-local’ (e.g., number 
of species of certain types of flora or fauna in a defined area), and therefore difficult to 
aggregate. Aggregate natural capital data thus gives rather little information on 
biodiversity and sustainability, while richer granular biodiversity data (fragmented)
provide little clues on biodiversity’s contribution to natural capital or economic output.
There have been efforts to aggregate bottom-up biodiversity data into national-level
data, one of which will be exploited in this paper as an interaction variable between 
ecosystem capital and biodiversity. 

This paper is also connected to the rich growth accounting literature. Growth 
accounting has been a standard toolkit for economists to estimate the contributions 
from various factors of production [see Barro (1999), and Barro and Sala-i-Martin
(2004), for comprehensive guides]. Growth accounting has traditionally been used to 
estimate technological progress as total factor productivity or TFP [Solow (1957)]. 
Under some assumptions on competitive markets, growth accounting using capital 
stocks (primal method) is equivalent to that through factor payments (dual method) as 
clarified by Hsieh (1999).

In the context of this paper, ecosystem services are unpriced and cannot be seen
through factor payments. The only feasible approach is to perform a series of 
regressions using standard capital stocks together with the comprehensive natural 
capital data. This approach can be robust under some circumstances. Elasticities 
derived through regressions do not measure the valuation of each factor in the 
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accounting sense, but how much output changes with respect to these capital 
measures. Hence, even if certain factors are systematically undervalued (in the 
accounting sense) compared to other forms of capital, elasticity measures can still pick 
up their true effects on growth. 

The growth regression approach is not without its known weaknesses. Should natural 
capital stocks be measured with large errors (as opposed to just undervaluation), 
elasticity estimates will suffer from attenuation bias that corresponds to the size of the 
errors. Nevertheless, one could argue that even attenuated estimates can be useful 
as lower-bound estimates. As highlighted by Barro (1999), the growth regression 
approach can be prone to aggregation bias, and also does not work well when there 
are increasing returns to certain factors. To address this concern, we provide estimates 
across a range of specifications using various categories of natural and ecosystem 
capital. We have also separated out infrastructure versus non-infrastructure capital 
(made possible by the IMF dataset).

As mentioned above, there will be natural concerns over endogeneity. Regression 
approaches will have to deal with various sources of endogeneity—mismeasurement, 
omitted variables, and reverse causality. This paper takes a wide-casting approach. 
Natural capital is first incorporated into a traditional growth regression with country 
fixed effects. A set of regressions then uses the Arellano-Bond (AB) estimator where 
endogeneity is treated for using past lagged regressors or other instruments. The last 
set of regressions uses a Pseudo Poisson Maximum Likelihood (PPML) estimator to 
better account for heteroskedasticity, in line with more recent literature. In doing so, 
the paper provides a small innovation that builds on Santos Silva and Tenreyro (2006)
to estimate a growth form regression with PPML. 

3. Data

The research uses data from several established sources. The Penn World Table 
(PWT) provides key variables related to economic performance, such as GDP, 
employment, GDP per capita, and so on. Importantly, the PWT also provides the most 
comprehensive measure of human capital, which is critical to any growth accounting 
exercise.7

The CWON dataset provides comprehensive data on a range of man-made capital, 
human capital, and natural capital. As mentioned, most unique for this dataset is the 
available of natural capital data, spanning both natural renewable capital and natural 
non-renewable capital. This dataset is also supported by a set of rich technical papers 
detailing the methodologies behind each of the data items. This research also draws 
on the IMF capital stock dataset, which contains detailed series on gross fixed capital 
formation (GFCF).

7 See Inklaar and Timmer (2013). Version 10, which is used in this analysis, was released in 
early 2023.
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As can be seen from the brief description here, some of the data are provided by more 
than one dataset. For example, both the PWT and CWON provide estimates of human 
capital. When such a situation occurs, the choice of which set of data to use is largely 
down to practical considerations to implement the regressions as robustly as possible. 

To give a concrete example, the PWT’s human capital index is the rate of return on 
schooling taken from the literature multiplied by the years of schooling, and then 
combined with employment data. On the other hand, the CWON uses discounted 
future earnings, coupled with projected demographic profiles, to arrive at the estimate 
of an economy’s human capital wealth. The latter could be more prone to endogeneity, 
noting that GDP growth itself can affect earnings. PWT human capital data are also 
more widely used in the literature. All human capital data used in this research are thus 
taken from PWT (instead of CWON) to be more in line with the literature. 

All three datasets – PWT, CWON, and IMF – provide estimates of fixed capital.8 Of the 
three, only the IMF dataset provides further breakdown into public and private sector 
GFCF, as well as investments through PPPs. This dataset allows private capital and 
public infrastructure series to be proxied, and for more detailed growth accounting. The 
PWT capital series, unlike the IMF dataset, does not allow more detailed 
disaggregation into public, private, and PPP type investments. Hence, the IMF capital 
stock series are used for this analysis.

3.1 Ecosystem Capital

This research further separates renewable natural capital into two subsets–cultivated 
capital (timber, cropland, fisheries, pastureland) and ecosystem capital (mangrove, 
non-timber forest, protected areas). For the avoidance of doubt, this distinction is made 
for the purpose of this research (i.e., this categorization does not appear in the CWON 
dataset). It is again important to reiterate that cultivated capital can be at odds with 
ecosystem and separating the two is conceptually important. 

3.2 Accounting for Biodiversity

While CWON provides a good starting point for data on natural capital, it does not 
include data on biodiversity, which tend to be localized (e.g., count of species at a 
particular location). However, with more widespread interest in the subject in recent 
years, there are increasingly more aggregated scores or data available. 

Biodiversity Intactness Index 

The BII was first started for South Africa [Scholes and Biggs (2005)] and is now 
extended to global coverage [Newbold et al., (n.d.)]. As the name suggests, this index 
attempts to measure intactness. It relies on a mix of high-level satellite pictures, field 
data, and algorithms to create a 0 to 1 score for each granular, spatially differentiated 

8 Note that CWON obtains physical capital stocks from PWT.
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area. It is “an estimate of the percentage of original number of specie that remain and 
their abundance, despite human pressures.” A score closer to 1 will mean greater 
biodiversity intactness. Coverage has been extended globally and it is now a key data
tracked maintained by the Natural History Museum in the UK and used in many 
research and reports. 

The key advantage of BII is that it contains a mixture of granular data, which can then 
be aggregated at the country level. BII also accounts for both biodiversity and biomass. 
The slight disadvantage is that this index prizes intactness over relative biodiversity 
abundance or biomass. For example, a desert may be considered more pristine and 
achieve a high score, but it may not necessarily have the biomass of flora and fauna 
compared to a less pristine forest with lower intactness score. It may thus be difficult 
to compare across regions with vastly different climates and natural environments to 
begin with. Finally, the latest open source BII data are up to 2014 only, thereby 
reducing the number of data points whenever this series is used.

Environment Performance Index

The EPI dataset from the Yale Center for Environment Law and Policy uses 40 
performance variables to rank countries on their efforts “to protect environmental 
health, enhance ecosystem vitality, and mitigate climate change” [Wolf et al. (2022)].

The key advantage of this dataset is that with its richer set of 40 variables, it is in 
principle possible to further unpack the qualitative aspects of nature’s health (e.g., 
nitrogen management, fisheries health, pollution, waste management, and so on). 
Unfortunately, this dataset is highly unbalanced.9 It becomes practically difficult to use 
these variables consistently to adjust for the quality of ecosystem capital. Nevertheless, 
where practical, we have used EPI variables as additional instruments in some 
regressions. The full list of variables used in this paper is provided in Annex A 
(including other variables in Table 7). In addition, Annex B provides the correlation 
between BII and various EPI variables, with the relevant EPI variables then selected 
as additional instruments in one of the regressions (to be explained later).

4. Growth Accounting Regressions

4.1 Growth Model

The paper first illustrates a familiar growth decomposition:

Equation 1

9 Some variables have data collated annually, some once every few years, and some only once 
in the entire dataset.
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Where and are infrastructure and non-infrastructure capital stocks respectively, 
is labor, is human capital ( being effective labor), and the augmenting total 
factor productivity. There is a sizeable literature using the Cobb-Douglas function as 
the basis for cross country or single growth accounting regressions [see Senhadji 
(2000), Aghion and Howitt (2007), Chow and Li (2002) etc.]. 

It is possible to write the above using the more general expression 
.10 The labor augmenting form has also been used in literature [see 

Esfahani and Ramirez (2003), Aiyar and Dalgaard (2009), Han et al. (2020)]. Dividing 
across by , the above equation becomes:

Equation 2

where are expressed in effective labor. In growth terms, the equation becomes:

Equation 3

Where is the growth rate of output per effective labor (the same analogs hold for 
other variables with ). This basic growth accounting model is extended to incorporate 
natural capital:

Equation 4

Where are the categories of natural capital stocks (again in effective labor) and 
the respective elasticities, which in growth terms becomes:

Equation 5

The above formulation can be represented straightforwardly as a log-differenced 
regression (e.g., is represented by and so on). Time-invariant 
variables are also purged, just as it would be under fixed-effect regressions. Growth 
regressions (as opposed to levels) are also more robust against spuriousness caused 
by trends. 

10 Barro and Sala-i-Martin (2004) and Jones (2005) show that only the labor-augmenting growth 
function is consistent with steady-state growth. Note that whether the more general function or 
the labor-augmenting one used in this paper, the regression estimation will be the same but 
with a different TFP interpretation arising from intercept.
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We will present three sets of regressions. We first show the results from simple fixed 
effect panel regressions (Table 1). Fixed effect regressions have the advantage of 
purging any effects of time-invariant cross-country differences. These are also 
relatively easy to understand and provide readers with the preliminary sense of the 
estimates. The second set of regressions (Table 2) is based on Arellano-Bond (AB), 
where past variables are used as instruments to overcome endogeneity. In some 
specifications, we also include additional instruments from the EPI dataset. The AB 
estimates should be seen as the benchmark given that these are the most robust to 
endogeneity concerns. Third, we present a set of regressions that uses PPML 
estimator as robustness check (Table 3).

4.2 Panel Regressions

This section provides the results of various fixed effect panel regressions. R1 is a 
traditional growth regression without natural capital (i.e., Equation 3). R2 expands on 
R1 and includes non-renewable and renewable natural capital as per Equation 4. R3 
further disaggregates renewable capital into cultivated capital and ecosystem capital.
R4 replaces ecosystem capital with the biodiversity-adjusted one. R5 is similar to R4 
but has ecosystem capital and BII as separate variables instead. All regressions are 
carried out with year dummies, and with clustered standard errors by each economy.
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Table 1: Regressions of Output and Capital Stocks

R1 R2 R3 R4 R5

Infrastructure stock, log difference 0.174*** 0.189*** 0.177*** 0.200*** 0.200***
[0.046] [0.050] [0.050] [0.049] [0.049]

Other GFCF stock, log difference 0.137*** 0.131*** 0.129*** 0.104** 0.104**
[0.038] [0.041] [0.041] [0.052] [0.052]

Non-renewable natural capital, log 
difference -0.004** -0.004** -0.004** -0.004**

[0.002] [0.002] [0.002] [0.002]
Cultivated natural capital, log 
difference -0.002 -0.000 -0.000

[0.011] [0.011] [0.011]
Ecosystem natural capital, log 
difference 0.063** 0.101**

[0.025] [0.039]
Renewable natural capital, log 
difference 0.029*

[0.015]
Ecosystem natural capital BII 
adjusted, log difference 0.102***

[0.037]
BII, log difference 0.124

[0.143]
Constant 0.026*** 0.026*** 0.026*** 0.014*** 0.014***

[0.002] [0.002] [0.002] [0.003] [0.003]

Year fixed effects Yes Yes Yes Yes Yes
Observations 2,854 2,476 2,476 1,521 1,521
R-squared 0.151 0.162 0.165 0.197 0.197
Number of groups 125 115 115 113 113
R-Square Overall 0.176 0.188 0.192 0.213 0.212
F-statistics 19.54 19.83 20.54 19.27 18.21
p-value 0 0 0 0 0
Standard errors are clustered by economy and reported in brackets, *** p<0.01, ** p<0.05, * p<0.1
Data sources: Infrastructure and GFCF stocks (IMF), human capital (PWT), BII (Natural History Museum 
UK), natural capital data (CWON). See Annex A for full details of data sources.
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4.3 System Generalized Method of Moments (GMM)

The fixed effect regressions in the previous sub-section provides a preliminary sense 
of plausible estimates–the combined effects of physical capital (infrastructure and non-
infrastructure) are around one-third which is roughly in line with literature [Hall and 
Jones (1999)]. To further address concerns of endogeneity, a set of regressions using 
the AB estimator is implemented, where past values of regressors are used as 
instruments. To be clear, the AB regressions here do not contain lagged dependent 
variables. Rather, AB is used to address potential endogeneity caused by reverse 
causality, resting on the assumption what the dependent variable at time t does not 
affect past regressors, and that past lagged regressors are valid instruments. 

The results are presented in regressions R6 to R9, mirroring R1 to R4 respectively.
These regressions make use of only system instruments, i.e., lagged values.11 In 
regression R10, land area, population, and a set of EPI variables are included as 
additional instruments (see Table 6 for the list of EPI instruments used and Table 9 on
how these correlated with the BII statistic). The assumption here is that these 
environmental variables correlate and provide information on biodiversity, but do not 
affect per capita incomes directly.

11 Roodman (2009) provides a detailed guide on the implementation of system GMM in STATA. 
The AB regressions are performed using xtabond2 in STATA. This would include two types of 
past lags as instruments – differenced lags, and level lags. 
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Table 2: Regressions of Output and Capital Stocks (Arellano-Bond)

R6 R7 R8 R9 R10 R10(a)

Infrastructure stock, 
log difference 0.135** 0.220*** 0.202*** 0.241*** 0.221***

0.239**
*

[0.060] [0.045] [0.045] [0.052] [0.044] [0.082]
Other GFCF stock, 
log difference 0.149** 0.175*** 0.172*** 0.145** 0.137***

0.189**
*

[0.065] [0.052] [0.048] [0.061] [0.056] [0.086]
Non-renewable 
natural capital, log 
difference -0.007*** -0.006*** -0.005** -0.003

-
0.011**

[0.002] [0.002] [0.002] [0.002] [0.005]
Renewable natural 
capital, log 
difference 0.049

[0.033]
Cultivated natural 
capital, log 
difference 0.006 -0.006 -0.002 -0.028

[0.017] [0.018] [0.016] [0.037]
Ecosystem natural 
capital, log 
difference 0.088**

[0.040]
Ecosystem natural 
capital BII adjusted, 
log difference 0.083** 0.124*** 0.178**

[0.035] [0.039] [0.072]

Constant -0.021*** 0.011** -0.020*** 0.021*** 0.01
0.019**

*
[0.008] [0.005] [0.005] [0.005] [0.016] [0.006]

Instruments Lagged
variables

Lagged
variables

Lagged
variables

Lagged
variables

Lagged
variables,
land area, 
population
and EPI
variables

Lagged
variable
s, land 
area,

populati
on

(with
collaps

e)
Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 2,854 2,476 2,476 1,521 1,521 1,521
Number of groups 125 115 115 113 113 113
Wald Statistics 738.7 863.9 1090 757 776.7 651.6
P-value 0.000 0.000 0.000 0.000 0.000 0.000
AR(1) 0.000 0.000 0.000 0.000 0.000 0.000
AR(2) 0.023 0.022 0.018 0.050 0.048 0.049
Sargan Test 0.000 0.000 0.000 0.000 0.000 0.005
Hansen Test 1.000 1.000 1.000 1.000 1.000 0.600
Standard errors are clustered by economy and reported in brackets, *** p<0.01, ** p<0.05, * p<0.1
Data sources: Infrastructure and GFCF stocks (IMF), human capital (PWT), BII (Natural History 
Museum UK), natural capital data (CWON). For regression R(10), additional EPI variables are used 
as instruments. See Annex A for full details of data sources.

For regressions R6 to R10, there are a large number of instruments given the many 
lags in the dataset. One could constrain the number of lags to reduce the number of 
instruments, but this treatment would be arbitrary and result in loss of information. The 
presence of many lag instruments means that the Hansen test of instrument validity

Jang Ping Thia, Jiaqi Su, and Xinyu Kong



AIIB Working Paper No. 14 (2024)

16

will not be informative. Regression R10(a) replicates R10 but without EPI variables 
instruments, and with the additional collapse function in order to reduce the number of 
instruments. 12 In R10(a), the BII-adjusted ecosystem variable continues to be 
significant, with an even higher coefficient. The Hansen test does not reject the validity 
of instruments.

4.4 Pseudo Poisson Maximum Likelihood (PPML)

Following Santos Silva and Tenreyro (2006), the research checks for the robustness 
of constant elasticity log linear estimates. This consideration is highly relevant in the 
context of this paper as there are likely sources of heteroskedasticity–for example, the 
impact of natural and ecosystem capital could be larger for economies with higher 
shares of primary sectors (e.g., agriculture). Data on natural capital are also relatively 
new and subject to various methodological uncertainties.

A key constraint with PPML is that it only deals with non-negative dependent variables. 
In a growth regression context, this limitation is a particular constraint as growth can 
be negative in some years. One can thus express growth as a ratio – with a ratio above
and below 1 implying positive growth and contraction otherwise. Using as the time 
subscript, growth can be written as:

Equation 6

which corresponds to Equation 4. With this expression, negative-value variables are 
avoided on the LHS, and the RHS variables can be implemented in the PPML 
estimation as log-differenced terms (e.g., on the RHS can be represented by 

and so on), just as the regressors in previous sections. Time-invariant 
omitted variables would also not have any impact on the regression. 

Equation 6 thus allows us to implement PPML to address the concerns arising from 
heteroskedasticity while retaining key features of earlier growth regressions for 
comparability. 

12 While it does not reject the null hypothesis of valid instruments, the return of p values of 1 
indicates that it is not an effective test. The collapse function generates one moment condition 
across all lags, as opposed to one moment condition per lag.
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Table 3: Regressions of Output and Capital Stocks (PPML)

R11 R12 R13 R14 R15

Infrastructure stock, log 
difference 0.173*** 0.196*** 0.175*** 0.199***

0.195**
*

[0.045] [0.048] [0.049] [0.050] [0.044]
Other GFCF stock, log 
difference 0.137*** 0.134*** 0.128*** 0.101* 0.116**

[0.039] [0.042] [0.041] [0.054] [0.050]
Non-renewable natural 
capital, log difference -0.004** -0.004** -0.005** -0.004**

[0.002] [0.002] [0.002] [0.002]
Cultivated natural capital, 
log difference -0.002 0.001 -0.002

[0.011] [0.010] [0.010]
Ecosystem natural capital, 
log difference 0.066***

0.103**
*

[0.025] [0.039]
Renewable natural capital, 
log difference 0.001

[0.014]
Ecosystem natural capital 
BII adjusted, log difference 0.105***

[0.040]
BII, log difference -0.095

[0.075]

Year fixed effects Yes Yes Yes Yes Yes
Observations 2,854 2,475 2,475 1,521 1,626
Number of groups 125 114 114 113 113
chi-square 459.2 540.8 575.3 349.3 402.8
P-value 0 0 0 0 0
Standard errors are clustered by economy and reported in brackets, *** p<0.01, ** p<0.05, * p<0.1

5. Discussions of Results

Natural capital and ecosystem capital stocks are introduced into a standard growth
regression framework. This paper argues that such a parsimonious treatment is a 
strength rather than a weakness. The simplicity allows for comparability with existing 
estimates in the literature and also for readers to develop an intuitive understanding of 
the relative magnitudes. Results for a range of specifications are provided to bolster
confidence that the key conclusion holds.

Regression estimates show that ecosystem capital has a significant and meaningful 
economic elasticity of 0.063 to 0.124. In many regressions, the ecosystem capital 
coefficient is around one-third of the estimated elasticities of physical capital 
(infrastructure and non-infrastructure combined). These estimates are sizeable, and it
becomes clear that ecosystem elasticity estimates are significantly larger than the 
valuation of ecosystem capital stocks in the CWON dataset.

The standard fixed effect panel (Table 1) and panel PPML regressions (Table 3) show
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It is clear that with the AB estimator, the coefficients for infrastructure and non-
infrastructure GFCF are higher compared to simple fixed effects panel or 
PPML estimates. Consider simultaneity as the source of endogeneity. Where the 
dependent variable reverse causes the regressor positively, the general effect 
is one of attenuation, which is observed here. In other words, the true effect of 
infrastructure and non-infrastructure on growth is higher once the simultaneity is 
accounted for in the AB regressions.

5.1 The Importance of Biodiversity and Ecosystem Capital

A subtler point here is that the AB estimator also shows a higher coefficient for the 
unadjusted ecosystem capital (0.88 in R8 is higher than 0.63 in R3). Recall the ‘price 
effect’ discussed in the Introduction. The growth effect on valuation of unadjusted 
ecosystem is likely positive, and hence detected through this attenuation bias outside 
of the AB estimator. Importantly, using the BII adjusted ecosystem variable, the 
estimates are 0.102, 0.083, and 0.105 for fixed effect, AB, and PPML respectively, 
which are remarkably similar. These are also similar to the AB estimator for non-
adjusted ecosystem capital, which is 0.88 in R8.

The conjecture here is that the BII adjusted ecosystem variable is less prone to growth 
or price effects. While the BII variable is not standalone significant when used 
separately (as in R5 and R15), the sign for BII is negative. When BII is included as a 
standalone variable, the coefficients of unadjusted ecosystem capital also become 
higher at around 0.101 (compared to around 0.63 when BII is excluded).

This finding is perhaps not so surprising in hindsight, as the BII adjusted ecosystem 
variable by design accounts for depletion (Annex B provides further evidence that BII 
is negatively correlated to output). The inclusion of BII, whether directly adjusted for 
ecosystem capital or as a separate variable, gives greater confidence to the estimate 
of ecosystem capital. All three estimation methods produce similar estimates. 
Furthermore, the BII adjusted ecosystem variable seems to work well, providing some 
improvement in the goodness of fit compared to the unadjusted one. The coefficients 
are also higher than the unadjusted ones. This finding is also informative and highlights 
the value of making BII adjustments to ecosystem capital.

5.2 Other Natural Capital (Non-Ecosystem)

The growth elasticity of commodity natural capital (i.e., commodities and fossil fuels) 
is small and mostly negative over the time period of the analysis. It is not to say that 
commodities and fossil fuels are unimportant for economic output. Indeed, these may 
even be critical. The interpretation here, given that this is a panel study of economies, 

AIIB Working Paper No. 14 (2024)

very similar results, while the AB regressions (Table 2) have results in the same 
direction but with higher coefficients. Though the three sets of regression estimates 
point to the same general conclusion –namely, the importance of natural or ecosystem 
capital–the AB estimator would in principle be most robust to endogeneity concerns. 
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is that such endowments have not systematically improved the growth of the endowed 
economies. This finding is in line with the literature that finds little or even negative 
impacts of such endowments [Venables (2016); Caselli and Michaels (2013)]. Similarly, 
cultivated natural capital also has relatively negligible impact on economies’ growth.

5.3 The Implication on Factor Contributions

It is important to also discuss what these elasticities imply in terms of factor 
contributions. Consider the estimates in Table 2. Similar with Han et al. (2020), the 
elasticity coefficient for infrastructure is also sizeable and larger than non-infrastructure 
GFCF across all specifications. The combined elasticities of physical capital are 
around 0.37 in R8 with unadjusted ecosystem capital, and 0.38 and 0.36 respectively 
adjusted with BII in R9 and R10. These elasticities are broadly in line with the literature, 
which has often taken the elasticity of all capital to be around one-third though there 
will be economy-to-economy variations [Hall and Jones (1999)]. This result provides 
some confidence to the estimates in this paper.

The inclusion of natural or ecosystem capital did result in some changes to the 
elasticities of infrastructure and non-infrastructure GFCF. Broadly speaking, 
coefficients for infrastructure capital increased, and coefficients for non-infrastructure 
GFCF declined or stayed largely unchanged. 

Consider omitted variables. The omitted variable interpretation implies ecosystem 
capital has a negative correlation with infrastructure capital, thus resulting in downward 
bias of the latter when the former is omitted. The direction of bias for non-infrastructure 
GFCF is on the other hand less clear cut. This result provides a hint that infrastructure 
development has indeed compromised natural or ecosystem capital (i.e., negative 
correlation), underscoring the longstanding concern that large scale infrastructure 
developments have negatively impacted nature and biodiversity (International Institute 
of Sustainable Development, n.d.). However, this result does not have to be read as a 
negative message going forward. Rather, the upshot here is that developing 
infrastructure in ways to enhance natural ecosystems can in fact boost the returns to 
infrastructure.

In regression R6 (without natural or ecosystem capital), the combined elasticity of 
infrastructure and non-infrastructure GFCF is 0.284. Assuming constant returns to 
scale and that elasticities reflect respective factor payment shares, factor payment to 
effective human capital is thus 0.716 (this share includes the effects of TFP growth 
augmenting effective human capital).

In R9, with the inclusion of ecosystem capital and biodiversity, the combined elasticity 
of infrastructure and non-infrastructure is 0.386, with the ecosystem elasticity at 0.083.
With these elasticities, the implied factor share of effective human capital is only 0.531.
The interpretation here is that a part of the factor returns to effective human capital is 
in fact due to unpriced ecosystem services.

Do Unpriced Natural and Ecosystem Capital Affect Economic Output? 
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Omitted variables could also be in the form of institutional quality, which has often been 
found to affect growth positively. The paper reproduces regression R4 which is simple 
fixed effect panel, regression R9 which has AB specification and regression R14 based 
on PPML, with World Bank Governance Variables added as controls for robustness 
checks. These are not capital stocks in the strict sense but are nonetheless added in 
this set of regressions as robustness checks. The results are presented in Annex A
Table 8. Note that the key result–namely the positive impact of ecosystem capital–
continues to hold across these regressions, with a slightly higher elasticity at around 
0.12.  

5.5 Study Limitation and Future Research

It is worth mentioning that there are also clear caveats to this growth regression 
exercise. Incorporating natural capital and ecosystems into macroeconomic 
performance is still relatively new, and so the estimates should be interpreted as 
preliminary and with caution. In our paper, system GMM is in principle the most robust 
method against endogeneity, but this method carries known weaknesses as described. 
Lagged variables are seen as either not sufficiently exogenous or are poor instruments 
with little information.

Future CWON data revisions would likely incorporate refinements that put greater 
weight on ‘volume’ data to estimate natural capital stocks in order to reduce ‘price’
effects. This improvement could yield more meaningful valuations of natural capital 
stocks and could reduce potential endogeneity. Future growth regressions to uncover 
nature’s contributions could provide improved estimates. Similarly, work on GEP is 
nascent but these should in principle provide data on shadow payments to ecosystem 
services and serve as corroborating data on growth regressions.

The log production function in this paper implies factor substitutability, which is 
debatable. If there is less substitutability between ecosystem and other forms of capital, 
there will clearly be a tighter “limit to growth” as natural capital is depleted [England 
(2000); Meadows et al. (2005)]. We are also unable to address whether there would 
be a “tipping point” beyond which nature would collapse, and with it a large non-linear 
negative impact on global GDP.

5.6 Estimated Ecosystem Contribution to GDP

Within the context of this exercise, based on the results here and assuming a global 
GDP of 164 trillion (in 2022 international purchasing power parity dollars), a 
conservative elasticity of 0.063 would imply an ecosystem contribution to global GDP 
of around 10 trillion per year in PPP terms. Using a higher estimated elasticity (0.124), 
this figure would rise to around 20 trillion in purchasing power parity (PPP) terms. If 
current USD estimates are used, these would be USD6 trillion to USD12 trillion 
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6. Conclusion

This paper incorporates various natural and ecosystem capital measures into a 
traditional growth regression framework and uncovers elasticities that point to the 
importance of the ecosystem capital. Across many specifications, ecosystem capital 
elasticity is found to be positive and significant. Ecosystem capital has an effect of 
around one-third of all physical investment capital (including infrastructure). The
contribution of ecosystem to global GDP is sizeable, USD6 trillion to USD12 trillion 
annually in current USD terms, and 1020 trillion in purchasing power parity terms. This
finding also suggests that ecosystem stocks, as they are measured today, are hugely 
undervalued. 

The message of this paper is that ecosystem capital is a key but largely unpriced or 
undervalued resource important to output and growth. On research, there would need 
to be further work to measure the contribution of nature to economies and the valuation 
of such natural and ecosystem capital, and to standardize measurements for cross

-

country comparisons. Over time, it is likely that GEP measurements will be developed 
for all economies, and GEP would be a major step forward to systematically account 
for the provisions by nature. As mentioned, the future iterations of CWON will also 
likely be improved in terms of coverage as well as methodology. 

On policy, it is clearly important to channel more resources for the protection and 
restoration of natural capital and ecosystems to ensure sustainable growth. The United 
Nations report that financing for nature-based solutions would need to reach more than 
USD536 billion a year by 2050 represents a four-fold increase from today [United 
Nations Environment Programme (2021)]. While this required financing may seem 
large, it is in fact fairly small relative to the contribution of ecosystem capital to global 
GDP. Seen in the context of the sizeable contribution from nature, this paper also 
suggests even an accelerated expenditure on nature would still be small relative to its 
true value and could have high payoffs.

respectively. The estimates in this paper fall between that of the sectoral approach and 
CGE modelling, and still point to the substantial contribution of natural capital to 
prosperity. 
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Annex A Summary of Data 

This research makes extensive use of CWON data, summarized in Table 4. It
further separates renewable natural capital into two broad categories. Ecosystem 
capital is defined as the sum of forest (non-timber), mangroves, and protected 
areas. Cultivated capital is defined as the sum of forest (timber), fisheries, cropland, 
and pastureland.

Table 4: Summary of CWON Natural Variables

CWON Variable Remarks
Time 

Period
Variables in CWON dataset

Total wealth Sum of produced capital, natural capital, human capital, 
and net foreign assets

1995-
2018

Produced capital Value of machinery, buildings, equipment, and 
residential and nonresidential urban land

1995-
2018

Natural capital Value of non-renewable natural resources and 
renewable natural resources

1995-
2018

Renewable natural capital
Sum of values of renewable natural resources (forests, 
mangroves, fisheries, protected areas, cropland, and 
pastureland)

1995-
2018

Forest – timber Value of timber forest, based on present value of output
1995-
2018

Forest – non timber Value of non-timber forest, based on present value of 
ecosystem services

1995-
2018

Mangroves Value of mangroves, based on present value of flood 
protection benefits

1995-
2018

Fisheries Value of fisheries, based on present value of output
1995-
2018

Protected areas Value of protected areas, estimated as the lower of 
returns to cropland and pastureland

1995-
2018

Cropland Value of cropland, based on present value of output
1995-
2018

Pastureland Value of pastureland, based on present value of output
1995-
2018

Non-renewable natural capital Sum of values of nonrenewable natural resources (oil, 
gas, coal, and minerals)

1995-
2018

Oil Present value of oil stock
1995-
2018

Gas Present value of natural gas stock
1995-
2018

Coal Present value of coal stock
1995-
2018

Minerals Present value of minerals stock
1995-
2018

Source: World Bank
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Table 5: BII Scores of Economies (2014)

Antigua and Barbuda 1.000 Botswana 0.825 Lithuania 0.672
Egypt 1.000 Iceland 0.819 Mozambique 0.670
Jordan 1.000 Ethiopia 0.815 Turkmenistan 0.668
Kuwait 1.000 Croatia 0.813 Albania 0.665
United Arab Emirates 1.000 Bolivia 0.805 Paraguay 0.664
Qatar 1.000 Myanmar 0.803 Sri Lanka 0.659
Oman 1.000 Slovenia 0.802 Greece 0.657
Bahrain 1.000 Ecuador 0.801 Thailand 0.655
Iraq 1.000 Chad 0.791 Costa Rica 0.654
Cyprus 1.000 Malaysia 0.785 Italy 0.652
Suriname 0.993 Tanzania 0.784 Comoros 0.652
Cabo Verde 0.990 Tajikistan 0.779 Belgium 0.646
Turks and Caicos
Islands 0.979 Panama 0.771 Switzerland 0.643
Saint Kitts and Nevis 0.975 Türkiye 0.770 China 0.634
Algeria 0.967 Namibia 0.770 Nicaragua 0.633
Finland 0.960 Nepal 0.768 Montenegro 0.631
Norway 0.952 Portugal 0.767 Guinea-Bissau 0.629
Central African 
Republic 0.949 Belarus 0.766 Eswatini 0.627
Sweden 0.949 Georgia 0.766 Kazakhstan 0.625
Curaçao 0.946 Hong Kong, China 0.765 France 0.622
Guyana 0.940 Angola 0.763 Dominican Republic 0.618
D.R. of the Congo 0.940 Brazil 0.762 Czech Republic 0.615
Bahamas 0.940 Yemen 0.753 Guatemala 0.615
Grenada 0.939 Congo 0.748 Philippines 0.615
Brunei Darussalam 0.938 Morocco 0.748 Romania 0.610
Barbados 0.935 Liberia 0.745 South Africa 0.609
Israel 0.931 Mexico 0.741 India 0.606
Trinidad and Tobago 0.913 Kyrgyzstan 0.737 Netherlands 0.605
Equatorial Guinea 0.912 Djibouti 0.733 New Zealand 0.603
Belize 0.908 Austria 0.724 Hungary 0.600
Canada 0.908 Cambodia 0.722 Serbia 0.597

Dominica 0.905 Poland 0.721
Syrian Arab 
Republic 0.594

Peru 0.902 Honduras 0.721 Ukraine 0.581
Iran 0.898 Colombia 0.720 Madagascar 0.575
Lao PDR 0.896 Bulgaria 0.719 Guinea 0.575
Zambia 0.887 Indonesia 0.719 Togo 0.572
Japan 0.885 Kenya 0.712 Ghana 0.571
Mauritania 0.883 Argentina 0.711 Uganda 0.567
Russia 0.882 Azerbaijan 0.711 Lesotho 0.565
Chile 0.880 Armenia 0.706 Côte d'Ivoire 0.561
Benin 0.877 Sudan 0.701 Lebanon 0.539
Estonia 0.874 Viet Nam 0.697 Sierra Leone 0.534
Mali 0.869 Jamaica 0.697 Luxembourg 0.531

Pakistan 0.868
Bosnia and 
Herzegovina 0.696

Republic of 
Moldova 0.508

Venezuela 0.863 Australia 0.696 Mauritius 0.507
Zimbabwe 0.862 Uzbekistan 0.695 Rwanda 0.506
Sao Tome and 
Principe 0.859 Tunisia 0.693 Mongolia 0.489
Latvia 0.859 Saudi Arabia 0.690 Nigeria 0.474
Burkina Faso 0.856 Spain 0.690 Burundi 0.462
Cameroon 0.855 United States 0.688 Haiti 0.461
Republic of Korea 0.848 North Macedonia 0.687 Denmark 0.449
Niger 0.842 Malta 0.685 United Kingdom 0.423
Gabon 0.840 Germany 0.685 Ireland 0.406
Fiji 0.839 Gambia 0.684 Bangladesh 0.374
Bhutan 0.836 Malawi 0.679 El Salvador 0.371
Senegal 0.829 Slovakia 0.678 Singapore 0.345

Uruguay 0.332
Source: UNDP and Natural History Museum, UK
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Table 6: Summary of Select EPI Variables Used as Additional Instruments in 
R10

Variable Time Period

Recycling rate (REC)
2000, 2005, 2010, 

2015
Unsafe sanitation (USD) 1995-2019
Nitrogen oxide (NOE) 2002-2019
Methane growth (CHA) 1999-2019
CO2 from land cover (LCB) 2010-2017
PM2.5 exposure (PMD) 1995-2019
Tree cover loss (TCL) 2006-2019
Household solid fuel use (HAD) 1995-2019
Sulphur dioxide exposure (SOE) 2002-2019

Data source: Environment Performance Index by Yale Center of Environmental Law and Policy

Table 7: Other Variables

Variable Remarks Time Period
Human capital
(H)

Human capital index incorporating education level and 
return to education. Data source: Penn World Table (PWT) 1995-2019

Employment (L) Number of persons engaged in employment. Data source: 
Penn World Table (PWT) 1995-2019

Effective human 
capital (HL)

Calculated as human capital multiplied by employment by 
authors 1995-2019

GFCF stock Calculated as the sum of general government investment 
and private investment GFCF by authors. Data source: IMF  1995-2018

Infrastructure
stock

Calculated as the sum of general government investment 
(GFCF) and PPP capital stock by authors. Data source: IMF 1995-2018

Population Data source: United Nations Population Division 1995-2019
Land area Land area in square kilometers. Data source: FAO 1995-2019
Voice and 
accountability Estimate. Data source: World Bank

1996/8, 2000, 
2002-2019

Political stability Estimate. Data source: World Bank
1996/8, 2000, 

2002-2019
Government
effectiveness Estimate. Data source: World Bank

1996/8, 2000, 
2002-2019

Regulatory 
quality Estimate. Data source: World Bank

1996/8, 2000, 
2002-2019

Rule of law Estimate. Data source: World Bank
1996/8, 2000, 

2002-2019
Control of 
corruption Estimate. Data source: World Bank

1996/8, 2000, 
2002-2019
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Table 8: Regressions (4), (9) and (14) with World Bank Governance Variables
Added as Controls

(4) Annex (9) Annex (14) Annex

Infrastructure stock, log difference 0.170*** 0.185*** 0.174***
[0.054] [0.057] [0.053]

Other GFCF stock, log difference 0.111* 0.145** 0.104*
[0.059] [0.059] [0.062]

Non-renewable natural capital, log 
difference -0.004** -0.003 -0.004**

[0.002] [0.002] [0.002]
Cultivated capital stock, log difference 0.002 0.011 0.004

[0.010] [0.016] [0.009]
Voice and accountability 0.014 0.003 0.008

[0.016] [0.004] [0.016]
Political stability 0.012*** 0.003 0.011***

[0.005] [0.003] [0.004]
Government effectiveness -0.011 0.001 -0.014

[0.011] [0.008] [0.013]
Regulatory quality 0.001 0.006 0.000

[0.010] [0.009] [0.010]
Rule of law 0.004 -0.002 0.005

[0.013] [0.009] [0.012]
Control of corruption 0.012 -0.012* 0.015

[0.011] [0.007] [0.012]
Ecosystem natural capital BII 
adjusted, log difference 0.124*** 0.120*** 0.125***

[0.039] [0.037] [0.040]
Constant 0.017*** 0.020***

[0.003] [0.006]

Observations 1,390 1,390 1,390
R-squared 0.197
Number of groups 111 111 111
R-Square Overall 0.0560
F-statistics 17.36
Wald Statistics 989.9
chi-square 422.3
p-value 0.000 0/000 0.000
Standard errors are clustered by economy and reported in brackets, *** p<0.01, ** p<0.05, * p<0.1
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Annex B How BII Correlates with EPI Variables

This Annex provides the correlation of BII with the various EPI variables with a 
stepwise beta regression using P=0.10 as the cutoff. As described in the paper, the BII 
provides granular, geospatial assessment of the intactness of natural ecosystems that 
can then be aggregated at the economy-wide level. A visual sample of BII is provided 
in Figure 1 below.

Figure 1: Geospatial BII Estimate

Source: Natural History Museum, UK

The BII and EPI differ in significant ways. BII captures the state of ecosystem as it is. 
EPI captures actionable and measurable outcomes. Take for instance Europe – it 
ranks high in EPI because it has strong environmental actions but yet its BII is low as
it has already lost much of its biodiversity and there is not much more to be exploited. 
Conversely, some economies in Asia have high BII and are still exploiting such natural 
resources (e.g., timber) and hence low EPI. The cross-economy correlation between 
BII and EPI is thus low. BII thus provides an important state variable to adjust for 
ecosystem wealth, but EPI provides important contextual information. 

Within caveats, this exercise provides a further understanding of the detailed factors 
that have a correlated, or even causal, relationship with BII. This exercise thus provides 
an important contextual understanding to BII. The relevant EPI variables, together with 
land area, are then used as additional instruments for BII in regression R10.

The EPI dataset provides 40 performance variables over three broad categories –
climate change, environmental health, and ecosystem vitality. For climate change, the 
variables include emissions of carbon dioxide, methane, greenhouse gas emissions
per capita, amongst others. For environmental health, variables include levels of air 
pollution, use of household solid fuels, sanitation, recycling rate, water safety, solid 
waste management, etc. For ecosystem vitality, variables include the level of land or 
marine environment placed under protection, sustainable nitrogen use, strength of 
species protection, wastewater management, etc. The result of the stepwise 
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regression is provided in Table 9 below. Only variables meeting the cutoff of P=0.1 are
displayed. 

Table 9: BII Correlation with Economy Characteristics and EPI Variables

Land area, in logs 1.687***
[0.111]

Per capita GDP in PPP, in logs -0.471**
[0.240]

Population, in logs -0.420**
[0.197]

Recycling rate 0.022***
[0.002]

Unsafe sanitation -0.009***
[0.003]

Nitrogen oxide exposure -0.008***
[0.003]

Methane growth rate -0.001**
[0.000]

Carbon dioxide from land cover 0.001**
[0.000]

PM 2.5 exposure -0.002*
[0.002]

Tree cover loss 0.002***
[0.000]

Household solid fuel use 0.011***
[0.002]

Sulphur dioxide exposure 0.008***
[0.003]

Constant -21.510***
[1.360]

Year fixed effects Yes
Economy fixed effects Yes
Observations 690
chi-square 610546
P-value 0.000
Robust standard errors are reported in brackets
*** p<0.01, ** p<0.05, * p<0.1

Land size is the single most important variable correlated with the BII. Unsurprisingly, 
population and income (as measured by per capita GDP in PPP) have negative 
correlations with BII. This finding also underscores why treating for endogeneity is 
important, as explained in the main paper, as there will be a concern that income 
growth itself (the dependent variable) is depleting natural or ecosystem capital stocks.

The positive and strong coefficient for recycling shows that economies that have strong 
recycling practices are also those that conserve the ecosystem. While the sign of the 
correlation is not surprising, the strength of this variable is a pleasant surprise. Unsafe 
sanitation has a small negative correlation with BII, providing some hint that 
investments in infrastructure to provide safer sanitation can positively impact the 
ecosystem too. Methane growth and particulate exposure (PM2.5) are all 
unsurprisingly negatively correlated with BII. 
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A few variables seem to be “wrong-signed” but can be explained by the tension 
between state of current endowments (which is measured by BII) and actions (which 
is measured by EPI). Economies with more use of household solid fuels, more 
exposure to sulfur dioxide and tree cover loss tend to be EMDEs where BII remains 
relatively more intact but simultaneously present greater opportunities for exploitation 
(compared to advanced economies). This finding also highlights the need to provide 
assistance to EMDEs for sustainable development, preserve natural ecosystems, as 
a global public good.
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Data Availability Statement

The data for this research will be made available upon request to the reviewers. We 
have deposited the research data at an open source depository for replication 
purposes (https://data.mendeley.com/datasets/cmvw5t56xm/1).

Do Unpriced Natural and Ecosystem Capital Affect Economic Output? 
Growth Regression Analyses

Jang Ping Thia, Jiaqi Su, and Xinyu Kong


